
CYCLOTOMIC INTERMEDIATE FIELDS: EXPLICIT COMPUTATIONS

JUSTIN KATZ

Fix an odd prime p, and let ζ be a primitive pth root of unity and let K = Q(ζ) be the pth
cyclotomic field.

The extension K/Q is Galois, with Gal(K/Q) ≈ (Z/pZ)×, the isomorphism being

(ζ 7→ ζa) 7→ a.

For each divisor m of p − 1 = |Gal(K/Q)| there is a unique order m subgroup Hm of Gal(K/Q),
which fixes the unique subfield Km of K having degree m over Q. The extension Km/Q is also
cyclic, but in general, to conclude that it is generated by an mth root of some element of Q, we
must be sure that Km contains an mth root of unity.

We circumvent this concern by working in a different environment. Let ω be a primitive p−1st root
of unity, and F = Q(ω), and define the compositum L = FK = Q(ζ, ω). Then L/F is Galois, and
again G = Gal(L/F ) is cyclic of order p− 1 under the same isomorphism as above. The discussion
above applies, and we may now conclude that the degree m intermediate field is generated by an
mth root of an element in F .

The goal of this document is to explicitly determine the radical expression for generators of the
intermediate fields for specific primes.

In the first section, some general theory is sketched:

• We construct elements of L that are equivariant under the action of G. Upon raising to a
suitable power, equivariance dictates that these elements lie in the base field F , so are thus
the roots we are searching for. The equivariant elements are particular Gauss sums, which
are an instantiation of a more general construction: Lagrange resolvents.
• Since G is cyclic, so is its group of characters Ĝ. We characterize a useful generator of the

character group, the Kummer character, and prove its existence using Hensel’s lemma.
• With the goal of factoring the power of Gauss sum that lies in F into primes ideals of OF , we

factor the Gauss sum itself in the top field L. We have no need to explicitly determine the
prime factors of the Gauss sum in OL lying over those in OF , but the enlarged environment
of the former allows for computation not accessible in the latter.
• Last, we specialize to the case that the prime factors of the power of the Gauss sum are
principal, in which case the preceding computations determines the decomposition up to a
unit, in fact a root of unity, which we identify.

This document is based on the writeup http://people.reed.edu/~jerry/361/lectures/kummer.

pdf , which is in turn based on http://www.math.umn.edu/~garrett/m/v/kummer_eis.pdf.
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1 Some algebraic number theory

1.1 Galois Equivariant elements: Gauss sums

Fix a character χ : G→ F×, and symmetrize ζ viz

τ(χ) =
∑
g∈G

χ(g)g(ζ) ∈ L.

Equivariance is built in, for any g ∈ G, changing variables in the sum and using multiplicitivity of
χ, compute

gτ(χ) = χ(g−1)τ(χ).

For nontrivial χ, this shows that τ(χ) lies in a proper extension of K in L.

However, since G is finite cyclic, there is some minimal nonzero m (depending on χ) dividing p−1,
the order of G, such that

g(τ(χ))m = (τ(χ))m for all g ∈ G.

Since the extension Gal(L/F ) is Galois, this shows that τ(χ)m ∈ F . By standard Galois theory,
the minimal polynomial for τ(χ) over F is xm− τ(χ)m ∈ F [x], which splits in the unique extension
F (τ(χ)) of F , since F contains a primitive mth root of unity.

Last, use the isomorphism (ζ 7→ ζa) 7→ a+ pZ to compute the identity τ(χ)τ(χ) = χ(−1)p:

τ(χ)τ(χ) =
∑
a,b

χ(a)χ(b−1)ζa−b =
∑
a,c

χ(c−1)ζa(1+c)

=
∑
c

χ(c−1)
∑
a

ζa(1+c) = χ(−1)(p− 1) + 1 = χ(−1)p.

In particular, observe that at the level of ideals, any prime dividing τ(χ) in an extension of Q lies
over p.

1.2 The Kummer character

Since p = 1 mod p − 1, the ideal pZ is unramified in OF , decomposing as a product of a prime
q and its Galois conjugates σq for σ ∈ Gal(F/Q). The residue field OF /q has order p, and the
projection OF → OF /q ≈ Z/pZ restricts to a group homomorphism of multiplicative subgroups
(OF )× → (OF /q)× ≈ (Z/pZ)×. The primitive p− 1st root of unity ω generates a cyclic subgroup
〈ω〉 in O×F which is taken isomorphically to (OF /q)× ≈ (Z/pZ)×, as shown in a moment.

Granting the isomorphism, we can define a unique character χq : Gal(L/F )→ O×F satisfying

χq(ζ 7→ ζa) = a+ q for all a ∈ (Z/pZ)×.

This is the Kummer character, sometimes called the Teichmuller character.

We seek to demonstrate the existence and uniqueness of an element ωk ∈ O×F such that ωk = a
mod q. Fix x1 = a+ pZ ∈ (Z/pZ)×. Then x1 satisfies the polynomial f(x) = xp−1− 1 mod q, and
further since x1 is nonzero mod q, it does not satisfy the derivative f ′(x) = (p − 1)xp−2 mod q.
By Hensel’s lemma, x1 lifts to a solution in the integral domain limOF /qn. That said, the p − 1
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distinct powers of ω already comprise a full solution set to f , and are already in O×F . Thus, the
character above is well defined.

Remark. As an example take p = 5, which factors as

5 = (2 + i)(2− i) ∈ F = Q(i).

In this case, q = (2 + i)OF is principal, and the Kummer character is characterized by

χq(ζ 7→ ζa) = a+ (2 + i)OF ∈ 〈i〉/(2 + i)OF ⊂ O×F /q.

The automorphism ζ 7→ ζ2 generates Gal(L/F ), and thus χq is determined by value there. We are
looking for the element of 〈i〉 which is 2 mod 2 + i. The unique such element is −i. Thus

χq(ζ 7→ ζ2
a
) = (−i)a.

Returning to generality, since χq has order p−1, it generates the characters of Gal(L/F ). Thus, the
element τ(χnq ) generates the unique subfield of L = Q(ζ, ω) of degree |χnq | = (p− 1)/ gcd(n, p− 1)
over F = Q(ω).

1.3 Factoring τ(χ−nq ) in OL

Knowing that τ(χ−nq )|χ
−n
q | ∈ OF we seek a formula for its prime factors in OF , so that we can

describe the relevant extension of F as a radical expression. To do so, we first work in the top field
L and its ring of integers OL.

In OL we have the factorization

pOL =
∏

g∈Gal(L/K)

(gP)p−1, P prime in OL, lying over pZ.

Thus, to factor τ(χ−nq )OL, we wish to determine the valuations

ordgP(τ(χ−n)), for each g ∈ Gal(L/F ).

A useful fact in the following computation is that the ideal P lies over the ideal (1 − ζ) OK , with
no ramification.

Start with n = 1, then compute using the last observation,

τ(χ−1q ) + P2 =
∑

a∈Z/pZ×

χ−1q (a)(1 + ζ − 1)a + P2

=
∑

a∈Z/pZ×

χ−1q (a)(1 + a(ζ − 1)) + P2

= (ζ − 1)
∑

a∈Z/pZ×

χ−1q (a)a+ P2.

Then, dividing through by ζ−1 using that ζ−1 is unramified in OL, the characterization χ−1q (a) =

a−1 mod q, and that P|q|pOL, see

τ(χ−1q )

ζ − 1
+ P = p− 1 + P = −1 + P.
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Next, use the Jacobi sum identity

τ(χ−nq ) =
τ(χ−1q )τ(χ

−(n−1)
q )

J(χ−1q , χ
−(n−1)
q )

to prove by induction the identity for n ∈ {1, ..., p− 2}

τ(χ−1q )

(ζ − 1)n
+ P =

−1

n!
+ P.

Then, since ζ − 1 is unramified in P, this yields the formula for such n:

ordP(τ(χ−nq )) = n.

To determine the valuation for the Galois conjugates gP, recall that the definition of the Kummer
character χq is subordinate to a choice of any prime q in OF over p, and P is the prime in OL over
q. These choices are eliminated by noting that Gal(L/K) ≈ Gal(F/Q) acts transitively on such
primes, and thus for any g ∈ Gal(L/K) ≈ Gal(F/Q) ≈ (Z/(p− 1)Z)× we have

ordgP(τ(χ−ngq )) = n.

Next, recall that g ∈ Gal(L/K) ≈ Gal(K/Q) acts by raising ω to a power, and the Kummer
character takes its values in the subgroup 〈ω〉. Employing the isomorphism σb = (ω 7→ ωb) 7→
b+ (p− 1)Z, we see

σbχ
−n
q = χ−nbq .

On the other hand, χ−nq is characterized by χ−nq (ζ 7→ ζa) = a−n + q, so

σbχ
−n
q (ζ 7→ ζa) = a−n + σb(q) = χ−nσbq(ζ 7→ ζa).

Combining the two displays, we see χ−nbq = χ−nσbq and thus χ−nq = χ−nb
−1

σbq
, where the inverse b−1 is

taken in (Z/(p− 1)Z)×. Thus, applying the valuation formula above, we see

ordσbP(τ(χ−nq )) = nb−1 ∈ {1, .., p− 2}.

We have just determined the factorization, for n ∈ {1, ..., p− 2}

τ(χ−nq )OL =
∏

σb∈Gal(L/K)

(σbP)nb
−1

1.4 Factorization of τ(χ−nq )m in a subring of OF

For the remainder, assume n|p− 1.

By construction, for any character χ : Gal(L/F ) → F×, the power τ(χ)p−1 of the Gauss sum is
fixed by Gal(L/F ), and thus lies in F . Letting m = |χ−nq | = (p − 1)/n, observe that τ(χ−nq )m is
still fixed by Gal(L/F ), and thus still lies in F , but is also fixed by the subgroup in Gal(K/Q) of

order m, and thus, letting ωm = e2πi/m, lies in the proper subfield Fm = Q(ωm) of F .

In Fm, there is a prime ideal p ⊂ OFm over p, and under q so that

pOFm =
∏

g∈Gal(Fm/Q)

gp.



CYCLOTOMIC INTERMEDIATE FIELDS: EXPLICIT COMPUTATIONS 5

Since the Gauss sum lies over p, its power in Fm lies over a power of p. Thus, to factor the power
of the Gauss sum, we seek a formula for the quantities

ordgp(τ(χ−nq )m) for each g ∈ Gal(Fm/Q) ≈ (Z/mZ)×.

To compute these, note that the automorphisms in Gal(Fm/Q) act by ωm 7→ ωβm for some β ∈
(Z/mZ)×. From the definition of ω and ωm, each such automorphisms arises as the restriction of
the automorphisms of the form ω 7→ ωb where b+mZ = β+mZ. For any β, there are ϕ(p−1)/ϕ(m)
equally viable choices for b. Furthermore, we have the decomposition in the top field L,

σβpOL =
∏

b=β mod m

(σbP)p−1.

Thus, for every power of σβp dividing τ(χ−nq )m in OFm , that power of (σβP)(p−1)/m does too, and
conversely. This gives

ordσβp(τ(χ−nq )m) =
m

p− 1
ordσbP(τ(χ−nq )).

We computed valuation on the right side to be nb−1. Last, since m = |χ−nq | = (p−1)/n, the display
above becomes

ordσβp(τ(χ−nq )m) = β−1

where β−1 is interpreted modulo m.

This shows the factorization in OFm
τ(χ−nq )mOFm =

∏
β∈(Z/mZ)×

(σβp)β
−1

1.5 Specializing to p principal

When the prime p (and thereby its Galois conjugates) dividing τ(χ−nq )mOFm is principal, say

p = πOFm the last display determines the factorization of τ(χ−nq )m up to a unit u ∈ O×Fm ,

τ(χ−nq )m = u
∏

β∈(Z/mZ)×
σβπ

β−1
.

Note that this factorization does not require that the primes lying over π be principal.

In the source writeups, a theorem due to Kronecker is used to show that the unit u ∈ O×Fm is actu-
ally a root of unity. Further, some (cyclotomic) polynomial arithmetic combined with Kummer’s
estimate, from the third section, shows that the root of unity u is characterized by the congruence

u
∏
σβπ

β−1

−p
+ πOFm =

(
−1

n!

)m
+ πOFm .

This expression simplifies in noting that the Galois norm of π over Q is
∏
g∈Gal(Fm/Q) gπ = p, so

that the characterization of u is

−u
∏

β∈(Z/mZ)×
σβπ

β−1−1 + πOFm =

(
−1

n!

)m
+ πOFm .

A derivation of these characterizations are in the source writeups, both of which deal with the case
that n does not divide p− 1. Since the goal is to compute the radical expressions for generators of
intermediate fields, such generality is not needed.
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2 Application of generalities: computing generators

2.1 One more generality: the quadratic subfield

Let p be any odd prime, so that p − 1 is divisible by 2. Take n = (p − 1)/2, so that m = 2. The
field F2 is just Q, so OF2 = Z.

The nth power of the Kummer character is quadratic, meaning χ−nq = χ−nq , and thus χ−nq = (·/p),
where the latter expression is the Legendre symbol. In this case, the Gauss sum identity from
above becomes τ2 = (−1/p)p. Certainly p is prime in OF2 = Z, and (−1/p) ∈ {±1} is a 2nd root
of unity.

Thus, without having to bring the machinery developed above to bear, we find that the unique
subfield of L of degree 2 over F is Q(ω,

√
(−1/p)p).

Remark. The characterization of the unit, knowing that when n = (p − 1)/2 the unit is (−1/p)
shows (noting that Gal(Fm/Q) = Gal(Q/Q) = {1})

−
(
−1

p

)
+ pZ =

(
p− 1

2
!

)−2
+ pZ.

There is a clear indication of some relationship with a special case of quadratic reciprocity, using
Gauss’ lemma, but I do not have time to explore this.

2.2 Working at specific p

Set p = 5: Take n = 1 so m = 4. Compute in OF4 = Z[i]

5 = (2 + i)(2− i) = π · σ3π.
By the formula for the power of the Gauss sum, we have

τ(χ−1π )4 = u · π · σ3π3 = u5(3 + 4i)

and the unit is characterized by

uσ3π
2 + πOF4 = 1 + πOF4 .

Working mod π, we see that u+ πOF4 = −1 + πOF4 , and thus u = −1. Consequently, we have an
alternate expression for L (being the ‘unique subfield of L of degree 6 over F ’)

L = Q
(
i, 4
√
−5(3− 4i)

)
Set p = 7: Take n = 2 so m = 3. Let ω3 = ω2, a primitive third root of unity, so F3 = Q(ω3).
Then we can factor p in OF3 by hand,

7 = (2− ω3)(3 + ω3) = π · σ2π, where σ2 : ω3 7→ ω2
3 = −ω − 1.

Then from our formula for the prime decomposition of the power of the Gauss sum,

τ(χ−2π )3 = uπ · σ2π2, for some root of unity u ∈ O×F3
.

The unit u is characterized by

−u · π0 · σ2π1 + πOF3 =

(
−1

2!

)3

+ πOF3 .
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Since 23 + πOF3 = ω3
3 + πOF3 = 1 + πOF3 , the congruence is

u(3 + ω3) + πOF3 = 1 + πOF3 ,

which simplifies to 5u + πOF3 = 1 + πOF3 . Thus u + πOF3 = 3 + OF3 = −ω2
3 + πOF3 . Since

u is a root of unity, the formermost and lattermost elements are equal, showing that τ(χ−2π )3 =
−ω2

3πσ2π
2 = ω2

37(3 + ω3). Thus, the unique cubic extension of F in L is

Q
(
ω, 3

√
−7ω2

3(3 + ω3)

)
.

Next, take n = 1 so m = 6. Note ω2
3 = −ω6 = −ω and already ω3 ∈ F6 = F . Thus F3 = F6 = F .

Thus, the factorization

7 = (2− ω3)(3 + ω3)

is still sensible in OF6 . However, since 2 is not invertible mod 6, we must use the Galois automor-
phism σ5 = ω6 7→ ω5

6. Again, letting π = 2− ω3, the factorization is

7 = π · σ5π.

Consequently, the factorization of the power of the Gauss sum is (for some root of unity u)

τ(χ−1π )6 = u · π · σ5π5 = u · 7 · σ5π4.
The root of unity u is characterized by

−u(σ5π)4 + πOF = (−1/1!)6 + πOF .

This congruence is −u(−2)4 + πOF = 1πOF , again giving 5u + πOF = 1 + πOF , which we know
means u = −ω2

3. This determines an alternate expression for L,

L = Q(ω, ζ) = Q(ω, 6

√
−7ω2

3(3 + ω3)4)

Set p = 11 Take n = 2 so m = 5. Compute

11 =
−33

−3
=

(−2)5 − 1

−2− 1
=

4∑
i=1

2i =
4∏
i=1

(2 + ωi5).

Set π = 2 + ω5, so that the formula for the power of the Gauss sum is

τ(χ−2π )5 = uπ · ω2π
3 · ω3π

2 · ω4π
4.

The unit u is characterized by the congruence

−uσ2π2 · σ3π · σ4π3 + πOF5 = −1/25 + πOF5 .

From the congruence 2 + πOF5 = ω5 + πOF5 , the congruence is

−u(2 + 4)2(2− 23)(2 + 24)3 + πOF5 = −1 + πOF5 ,

which reduces to u+ πOF5 = 4 + πOF5 = ω2
5 +OF5 showing equality of the former and the latter.

Thus, the quintic extension of F in L is

Q
(
ω, 5

√
11ω2

5(2 + ω2
5)2(2 + ω5)(2 + ω4

5)3
)
.


