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ABSTRACT

In the first part of this thesis we show that, for a given non-arithmetic closed hyperbolic n

manifold M , there exist for each positive integer j, a set M1, ...,Mj of pairwise nonisometric,

strongly isospectral, finite covers of M , and such that for each i, i′ one has isomorphisms of

cohomology groupsH∗(Mi,Z) = H∗(Mi′ ,Z) which are compatible with respect to the natural

maps induced by the cover. In the second part, we prove that hyperbolic 2- and 3-manifolds

which arise from principal congruence subgroups of a maixmal order in a quaternion algebra

having type number 1 are absolutely spectrally rigid. One consequence of this is a partial

answer to an outstanding question of Alan Reid, concerning the spectral rigidity of Hurwitz

surfaces.
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1. INTRODUCTION

Following Milnor’s construction Milnor-[EigenvaluesLaplaceOperator]1964 of a noniso-

metric pair of isospectral 16-dimensional flat tori, two enterprises have emerged: to produce

as large a family as possible of pairwise nonisometric, isospectral Riemannian manifolds and

to prove that particular a particular closed Riemannian manifold is not isospectral to any

other.

The main theorems of this thesis concern these two problems, respectively.

In the first we construct arbitrarily large families of nonarithmetic hyperbolic n-manifolds

which, in addition to being isospectral, share several additional topological invariants. This

construction uses an integral refinement of Gasssmann-Sunada equivalence, which was re-

cently used by D. Prasad Prasad-[RefinedNotionArithmetically]2017 to produce non-

isomorphic numberfields which have isomorphic idele class groups.

In the second, we prove that particular families of hyperbolic surfaces and 3-manifolds are

absolutely spectrally rigid. These families from principal congruence subgroups of maximal

orders in quaternion algebras which satisfy a certain arithmetic condition. An application of

this theorem is a partial positive answer to a question of A. Reid Reid-[TracesLengthsAxes]2014

concerning spectral rigidity of so-called Hurwitz surfaces: those surfaces of genus g having

automorphism group of order 84(g − 1), which is the maximum possible by Hurwitz’s theo-

rem.
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2. BACKGROUND

2.1 Geometry

In this section, (M, g) is a closed Riemannian manifold. We write dvg for the volume

form associated to g.

2.1.1 Laplace-spectrum

The eigenvalues of the Laplace operator of the Laplace operator ∆M,g acting on L2(M, dvg)

form a discrete set specM,g of nonnegative real numbers, tending to ∞. For each λ ∈ specM,g,

the dimension m∆M,g
(λ) of the λ-eigenspace EM,g(λ) = ker(∆M,g − λ id) in L2(M, dvg) is

finite. We encode the this data in the Laplace-spectral counting function, defined for

x ∈ R≥0 by

π∆M,g
(x) =

∑
λ∈spec(∆M,g)∩[0,x]

dim ker(∆M,g − λ id) (2.1)

2.1.2 Length spectrum

Within each free homotopy class γ of closed curves on M there is a geodesic representative

of minimal length; we write `g(γ) for that length. For a positive real number l, we write

LspecM, g(`) for the number of free homotopy classes γ of closed curves in M for which

`g(γ) = l.

Two compact Riemannian manifolds (M, g), (M ′, g′) are said to be Laplace-isospectral

(resp. length-isospectral) if specM,g = specM ′,g′ (resp. if LspecM,g = LspecM ′,g′). We say

that (M, g) is Laplace- (resp. length-) spectrally rigid if any (M ′, g′) to which it is Laplace-

(resp. length-)isospectral, is in fact isometric to (M, g).
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2.1.3 Curvature

Let (M, g) be a Riemannian manifold of dimension d, and write ∇ Levi-Civita connection

for the metric g. The Riemannian curvature tensor is then

Riem :Γ(TM) × Γ(TM) → Γ(EndTM) (2.2)

Riem(X,Y ) :
(
Z 7→ ∇X∇YZ − ∇Y ∇XZ − ∇[X,Y ]Z

)
. (2.3)

Let P be a plane in TpM and u, v ∈ P be a pair of linearly independent vectors, so that

P = Ru+ Rv. Then the ratio

Kp(u, v) = gp(Riemp(u, v)u, v)
gp(u, u), gp(v, v) − gp(u, v)2 (2.4)

is independent of the choice of basis u, v of P . Thus Kp defines a function on the Grassmanian

G2
pM of 2-planes in TMp , called the sectional curvature of (M, g) at p.

For each p ∈ M and x, y ∈ TpM , the Ricci curvature Ricp(x, y) is the trace of the

endomorphism Riemp(x, y) ∈ End(TpM). If (e1, . . . , ed) is an orthonormal basis of TpM

with respect to gp, then one has

Ricp(x, y) =
d∑
j=1

gp(Riemp(x, ej)y, ej). (2.5)

The scalar curvature is the function scal : M → R whose value at a point p ∈ M is

given by the trace of the Ricci curvature:

scalp =
∑
i 6=j

gp(Riem(ei, ej)ei, ej). (2.6)

If x1, ..., xd is a coordinate system about p, one has

Riemq(
∂

∂xh
,
∂

∂xi
) ∂

∂xj
=
∑
l

Rieml
jhi(q)

∂

∂xl
. (2.7)
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for a collection of real valued smooth function Rieml
jhi of x1, ..., xd. Then one has the following

expressions for the Ricci curvature

Ricij := Ric( ∂

∂xi
,
∂

∂xj
) =

∑
m

Riemm
ijm, (2.8)

and scalar curvature

scal =
∑
i,j

gij Ricij (2.9)

where gij is the inverse matrix to gij = g( ∂
∂xi ,

∂
∂xj ).

We define smooth real valued functions on M locally by the formulae,

| Riem |2(q) =
∑
i,j,k,l

(Rieml
ijk(q))2 (2.10)

| Ric |2(q) =
∑
i,j

(Ricij(q))2. (2.11)

Proposition 2.1.1. Berger.Gauduchon.Mazet-[SpectreVarieteRiemannienne]1971

Let (M, g) be a Riemannian manifold of dimension d.

1. For all p ∈ M , one has

| Ric |2p ≥ | scalp |2

d
(2.12)

with equality (for all p ∈ M) if and only if Ric = scal
n

· g.

2. For all p ∈ M , one has

| Riem |2p ≥ 2
| Ric |2p
d− 1 (2.13)

with equality (for all p ∈ M) if and only if (M, g) has constant sectional curvature.
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2.1.4 Heat kernel

The heat heat kernel on M is the fundamental solution to the heat equation on M .

That is, it is the unique smooth function KM : M × M × R>0 → R such that: Given any

initial data f : M → R, the solution F : M × R>0 → R of the heat equation

∆F = −∂F

∂t
(2.14)

F (x, 0) = f(x) (2.15)

is given by

F (x, t) =
∫
M
KM(x, y, t)f(x) dvg(x) (2.16)

By a theorem of Minakshisundaram and Pleijel Minakshisundaram.Pleijel-[PropertiesEigenfunctionsLaplaceoperator]1949

there exist a sequence of functions u(k)
M,g : M → R such that for each x ∈ M , the value u(k)

M,g(x)

is given by universal formulae in terms of the curvature tensor of M and its covariant deriva-

tives at x such that

KM(x, x, t) ∼ 1
(4πt)dimM/2

∞∑
k=0

u
(k)
M,g(x)tkt, as t → 0+. (2.17)

In particular, Berger-[PanoramicViewRiemannian]2003 one has

u
(0)
M,g(x) = 1 (2.18)

u
(1)
M,g(x) = 1

6 scal(x) (2.19)

u
(2)
M,g(x) = 1

360
(
2| Riem |2x − 2| Ric |2x + 5 scal2(x)

)
(2.20)
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where scal, Ric, and Riem are the scalar, Ricci, and Riemannian curvature tensors. As the

heat kernel KM,g(x, y, t) itself depends only on the the Riemannian structure (M, g), so too

do the numbers

a
(k)
M,g :=

∫
M
u

(k)
M,g(x) dvg(x), (2.21)

for each k ≥ 0. We refer to a(k)
M,g as the k-th heat invariant of (M, g).

It turns out that the heat invariants actually depend only on the Laplace-spectrum of

(M, g), as the following arguments show.

Proposition 2.1.2. Suppose (M, g) and (M ′, g′) are isospectral closed Riemannian mani-

folds. Then for all t > 0, one has
∫
M KM(x, x, t) dvg(x) =

∫
M ′ KM ′(x, x, t) dvg′(x).

Proof. Let let {λk : k ≥ 0} be the common sequence 0 = λ0 < λ1 ≤ λ2 ≤ . . . of Laplace

eigenvalues for (M, g) and (M ′, g′) and pick an orthonormal sequence of eigenfunctions ϕk on

M (resp. ϕ′
k on M ′) with eigenvalues λk. Then one can express the heat kernels for (M, g)

and (M ′, g′) as

KM,g(x, y, t) =
∑
k≥0

e−tλkϕk(x)ϕk(y) (2.22)

KM ′,g′(x, y, t) =
∑
k≥0

e−tλkϕ′
k(x)ϕ′

k(y) (2.23)

with rapid convergence, uniformly in x, y ∈ M (resp. in M ′). Integrating along the diagonal

and passing the integral through the sum, and using the fact that each ϕk has unit L2(M, vg)

norm, we find

∫
M
KM,g(x, y, t) dvg =

∑
k ≥ 0e−tλk

∫
ϕ2
k(x) dvg =

∑
k≥0

e−tλk . (2.24)

Carying out the same computation for (M ′, g′), we conclude

∫
M
KM,g(x, x, t) dvg =

∑
k≥0

e−tλk =
∫
M ′
KM ′,g′(x, x, t) dvg′ . (2.25)
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Corollary 2.1.1. If (M, g) and (M ′, g′) are isospectral then for all k ≥ 0, one has

∫
M
uM,k(x) dvg(x) =

∫
M ′
uM ′,k(x) dvg′(x). (2.26)

In particular: the dimension, volume, and total scalar curvature for (M, g) and (M ′, g′)

coincide.

Proposition 2.1.3. Berger.Gauduchon.Mazet-[SpectreVarieteRiemannienne]1971

Suppose (M, g) and (M ′, g′) are isospectral closed Riemannian manifolds, and that (M, g)

is a surface with constant scalar curvature κ. Then (M ′, g′) is also a surface with constant

scalar curvature κ. Furthermore, M and M ′ are homeomorphic.

Proof. For any Riemannian 2-manifold (M ′, g′), one has | Ric |2 = scal2
2 and | Riem |2 =

2| Ric |2 = scal2. Thus, the universal expression for the second term in the heat kernel

asymptotic expansion is

1
360

(
2| Riem |2 − | Ric |2 + 5 scal2

)
= 1

60 scal2 . (2.27)

Furthermore, by Cauchy-Schwarz (in L2(M ′, vg′)):

(∫
M ′

scalg′ dvg′

)2
≤
(∫

M ′
scal2g′ dvg′

)(∫
M ′

1 dvg′

)
(2.28)

with equality if and only if scalg′ and 1 are linearly dependent as functions on M ′, which is

to say: if and only if scalg′ is constant. Now note that, as

∫
M ′

scalg′ dvg′ =
∫
M

scalg dvg, (2.29)∫
M ′

scal2g′ dvg′ =
∫
M

scal2g dvg (2.30)∫
M ′

1 dvg′ =
∫
M

1 dvg, (2.31)

and by our assumption that scalg is constant on M , the inequality in  2.28 is an equality.

Thus, the scalar curvature on (M ′, g′) is constant, and is readily seen to be equal to that on

(M, g).
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Proposition 2.1.4. Berger.Gauduchon.Mazet-[SpectreVarieteRiemannienne]1971

Let (M, g) be a closed Riemannian manifold of dimension 3 with constant sectional curvature

σ, and suppose (M ′, g′) is isospectral to (M, g). Then dimM ′ = 3 and (M ′, g′) has constant

sectional curvature σ.

2.2 Quaternion algebras

A quaternion algebra over a field k is a central simple k-algebra of dimension 4. For

any field k, an example of a quaternion algebra is the collection of 2×2 matrices with entries

in k: M2(k). We refer to M2(k) as the split quaternion algebra over k. In any case, a

quaternion algebra A over k is canonically equipped with a reduced trace trdA : A → k,

reduced norm nrdA : A → k, and involution (·)∗ which are related by the formulae:

trdA(x) = x+ x∗, nrdA(x) = xx∗, for all x ∈ A, (2.32)

and each x ∈ A satisfies its characteristic polynomial:

p(X;x) := X2 − trdA(x)X + nrdA(x) ∈ k[X]. (2.33)

In equations  2.32 we are identifying the center of A with k. Furthemore, trdA is k-linear,

nrdA is multiplicative, and (·)∗ fixes the center k of A. The second expression in  2.32 reveals

that A is not a division algebra, if and only if there exists a nonzero elementwith reduced

norm zero. Indeed, so long as nrd(x) is nonzero, one has x−1 = (nrd x)−1x∗. Regarding A

as a 4-dimensional vectorspace over k the reduced norm is a quadratic form, and we have

Proposition 2.2.1. A quaternion algebra A over a field k is a division algebra if and only

if nrdA : A → k is anisotropic. In particular, if k is an algebraically closed field then no

quaternion algebra over k is a division algebra.

In fact, one can say more:

Proposition 2.2.2. If k is algebraically closed, then every quaternion algebra over k is

isomorphic to M2(k).
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The reduced trace and norm maps are invariant under A× conjugation, and as every

automorphism of a central simple algebra is inner (by Artin Wedderburn [TODO: cite!]), we

have

Proposition 2.2.3. Let A,B be quaternion algebras over fields k and ` respectively, and

suppose that ι : k ⊂ ` is a field embedding. Suppose ϕ : A → B is a k-algebra homomorphism.

Then one has

trdB(ϕ(x)) = ι(trdA(x)) and nrdB(ϕ(x)) = ι(nrdA(x)), for all x ∈ A. (2.34)

Furthermore for any field extension `/k, the extension of scalars A⊗k ` is itself a quater-

nion algebra over `. Combining this with Proposition  2.2.3 we have

Proposition 2.2.4. If A is a quaternion division algebra over a field k, then there exists an

extension ` of k such that A⊗k ` ∼= M2(`).

If ` is an extension of k as in proposition  2.2.4 , then we say that A splits over `. It is

the case that a splitting field for A can always be taken to be quadratic over k.

2.2.1 Over local fields

Suppose now that k is a local field of characteristic zero, so that k is isomorphic to R,

C, or a finite extension of Qp for some prime p. In this case, quaternion algebras over k are

classified by the following

Proposition 2.2.5. Maclachlan.Reid-[ArithmeticHyperbolic3Manifolds]2003 Let k

be a local field of characteristic zero. If k = C, then any quaternion algebra over k is

isomorphic to M2(C). If k = R, then any quaternion algebra over k is isomorphic to either

M2(R) or the division algbebra:

D = {
(
a b

−b a

)
: a, b ∈ C} ⊂ M2(C). (2.35)
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If k is a finite extension of Qp, then any quaternion algebra over k is isomorphic to either

M2(k) or

D = {
(

a b
$b′ a′

)
: a, b ∈ K} ⊂ M2(K) (2.36)

where K is the unique unramified quadratic extension of k, $ ∈ k is a uniformizer, and ·′ is

the nontrivial automorphism of K/k.

We remark that the quaternion algebra D in the above proposition is the unique quater-

nion algebra over k which is not split over k. We say that A is ramified over k if A ∼= D,

and unramfied if A ∼= M2(k). The content of the above proposition is that every quaternion

algebra over k is either ramified or unramified.

2.2.2 Over number fields

Now we suppose k is a number field, and R its ring of integers. We write Ωk for its set

of places, and write ν ∈ Ω∞
k (resp. ν ∈ Ωf

k) if ν is archimedian (resp. nonarchimedian).

We identify nonarchimedian places ν ∈ Ωf
k with discrete valuations ν : k → Z on k and in

turn, prime ideals p = {x ∈ k : ν(x) > 0} in R. For a place ν ∈ Ωk we write kν for the

corresponding local field, and if ν ∈ Ωf
k corresponding to a prime ideal p of R we write Rν

or Rp for the closure of R in kν . We say ν ∈ Ω∞
k is real (resp. complex) and write ν ∈ Ω∞,R

k

(resp. Ω∞,C
k ) if kν ≈ R (resp. C).

If A is a quaternion algebra over k, then for each place ν, the embedding k ↪→ kν of

fields induces an embeding A ↪→ Aν := A ⊗k kν of A into a quaternion algebra Aν over kν ,

in accordance with Proposition  2.2.4 .

Following the terminology of proposition  2.2.5 , we say that A is ramified over a place

ν ∈ Ωk if Aν is ramified over kν , and unramified otherwise.

The following theorem asserts that quaternion algebras (or more generally, central simple

algebras) over a number field satisfy a local-global principle, as follows:

15



Proposition 2.2.6. Suppose A,A′ are two quaternion algebras over a common number field

k. Then A ∼= A′ if and only if, for each place ν ∈ Ωk the local completions Aν and A′
ν are

isomorphic.

For each ν ∈ Ωk, there are only two possiblities for Aν up to isomorphism, so the theorem

amounts to the assertion: that two quaternion algebras over a common number field are

isomorphic if and only if they ramify over the same set of places.

By global class field theory, the set RamA of places over which A ramifies is a finite

set with even cardinality. Conversely, given any finite set S ⊂ Ωk of even cardinality and

such that S ∩ Ω∞,C
k = ∅ there is a unique quaternion algebra A with RamA = S, up to

isomorphism. A is a division algebra if and only if RamA is nonempty, wheras RamA = ∅

if and only if A is isomorphic to M2(k). Thus

Proposition 2.2.7. Let k be a number field. Then there is a bijection:

{quaternion algebras over k} ↔ {finite subsets of Ωk \ ΩC
k of even cardinality}

given by sending A 7→ RamA.

2.3 Quaternion orders

2.3.1 Local orders

In this section, k is a nonarchimedean local field of characteristic zero, with ring of

integers R having maximal ideal p. If A is an algebra over k, then x ∈ A is an integer (or

is integral) if the the algebra it generates over R is finitely generated as an R-module. An

R-order (or simply an order) in A is a subset O satisfying the following properties:

1. O is a subring of A containing 1;

2. O is a finitely generated R-submodule of A;

3. O generates A as a k-algebra.

16



We say an order O in A is maximal provided it is not contained in any other order. If A is

finitely generated as k-algebra, then it contains a maximal order, and any order is contained

in a maximal one.

It follows immediately from the definition that every element of an order is an integer.

Conversely every integer is contained in some maximal order, although in general, the set of

all integers in A need not be an order. Concerning quaternion algebras, however, we have

Proposition 2.3.1. Maclachlan.Reid-[ArithmeticHyperbolic3Manifolds]2003 Let A

be a quaternion algebra over a nonarchimedean local field k. Then the set of all integers in

A is an order in A if and only if A is ramified. In this case, it is the unique maximal order

in A.

Concerning the unramified case, we have

Proposition 2.3.2. Maclachlan.Reid-[ArithmeticHyperbolic3Manifolds]2003 Let L

be an R-lattice in k2. Then the set

End(L) = {x ∈ M2(k) : xL ⊂ L} (2.37)

is a maximal order in M2(k). Any maximal order in M2(k) is equal to End(L) for some

R-lattice L in k2. Moreover, if L and L′ are R-lattices in k2, then End(L) = End(L′) if and

only if L = λL′ for some λ ∈ k×.

As R is a principal ideal domain, every R-lattice in k2 is free of rank 2, so that any

R-lattice L in k2 is isomorphic to the standard R-lattice R2. Further, any isomorphsim

g : L → R2 extends uniquely to an automorphism g : L ⊗R k = k2 → k2. Then, as

M2(R) = End(gL) = g End(L)g−1, we have the following

Corollary 2.3.1. All maximal orders in M2(k) are conjugate under GL2(k).

As the set of g ∈ GL2(k) such that gM2(R)g−1 = M2(R) is k× GL2(R), there is a bijection

{maximal orders in M2(k)} ↔ GL2(k)/k× GL2(R). (2.38)
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Remark 2.3.1. The set of maximal orders in M2(k) for k a nonarchimedean local field can be

equipped with an adjacency relation, which makes this set into a q + 1 regular tree, which

is known as the Bruhat-Tits tree Tk of SL2(k). The tree Tk serves as a nonarchimedean

analogue of the hyperbolic plane, and is an interesting object of study in its own right.

Combining corollary  2.3.1 and proposition  2.3.1 , we have

Proposition 2.3.3. Let k be a nonarchimedean local field, and A a quaternion algebra over

A, then there is a unique conjugacy class of maximal order in A.

2.3.2 Global orders

Now suppose that k is a number field, and resume the notation of  2.2.2 . As in the local

setting, an R-order in a k-algebra A is an R-subalgebra which contains a k-basis for A.

Let A be a quaternion algebra over k, and O an order in A. Then for each finite place

ν, the localization Oν = O ⊗R Rν is an Rν order in Aν , and if O is a maximal order in A

then for each ν, Oν is a maximal order in Aν . Conversely:

Proposition 2.3.4. Let O be an order in a quaternion algebra A over a number field ν such

that for every finite place ν, the localization Oν is a maximal order in Aν. Then O is a

maximal order in A.

As in the local setting, maximal orders exist in any quaternion algebra. The group A×

acts on the set of maximal orders by conjugation. The number of orbits of this action is

finite, and is called the type number of A. The type number of A is denoted tA.

In much the same way that the class number hk = Ik/Pk of a number field k measures the

failure of the local-global-principle for principality of ideals, the type number tA measures

the failure of the local-global-principle for conjugacy of maximal orders. If A satisfies the

so-called Eichler conidtion, that A is unramified over at least one archimedian place, then

these two quantities are explicitly related:

Proposition 2.3.5. Maclachlan.Reid-[ArithmeticHyperbolic3Manifolds]2003 Let A

be a quaternion algebra over a number field k satisfying the Eichler condition. Then the type

number of A is the order of the quotient group of the restricted class group of k by the

18



subgroup generated by the classes of the prime ideals of R over which A is ramified and the

squares of prime ideals of R.

A consequence of this fact that will be crucial to a latter argument is

Corollary 2.3.2. Suppose k is a number field with class number 1. Then any quaternion

algebra A over k that satisfies the Eichler condition has type number 1. More generally, the

conclusion holds provided k has odd class number.

2.4 Units of quaternion algebras

If A is a quaternion algebra over a field k, we write

A1 = {a ∈ A | nrdA a = 1} (2.39)

for the subgroup of A× consisting of elements of reduced norm 1. If k is a number field, and

ν ∈ Ωk is a place over which A is unramified, then the natural inclusion k → kν induces an

inclusion A1 ↪→ A1
ν . Picking an isomorphism Aν ∼= M2(kν), we can identify A1

ν with SL2(kν),

and thus A1 with a subgroup of SL2(kν).

For a nonempty finite set S ⊂ Ωk of places, write

kS =
∏
ν∈S

kν , kSA =
′∏

ν /∈S
kν (2.40)

for finite product of fields, and for the S-adeles of k respectively; we use coordinate embed-

dings to view each as subrings of the full adeles kA.

Under the diagonal embedding, it is well known that k embeds as a discrete, cocompact

lattice in kA. The classical weak/strong approximation theorems concern the projections

from kA to kS and kSA respectively, under the the diagonal embedding k → kA.

Let G be a linear algebraic group over k, and for any commutative k-algebra E, we write

G(E) for the points of G with values in E. The embeddings k → kSA and k → kSA and their

product k → kA induce embeddings G(k) → G(kSA), G(k) → G(kS), and G(k) → G(kA).
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We say that G satisfies weak approximation (resp. strong approximation) at S if

the natural map G(k) → G(kS) (resp. G(k) → G(kSA)) has dense image. We say that G

satisfies weak approximation (resp. strong approximation) if it satisfies weak approx-

imation (resp. strong approximation) at every finite set S ⊂ Ωk of places.

Remark 2.4.1. The classical weak/strong approximation theorems can be understood as the

assertion that the additive group Ga, as a linear algebraic group over k, satisfies weak/strong

approximation.

Consider now the linear algebraic group G over a number field k associated with the

units of reduced norm one in a quaternion algebra A over k. Then for all ν /∈ Ram(A) we

have G(kν) = A1
ν

∼= SL2(kν), and if ν ∈ Ram(A), then G(kν) = D1
ν is compact.

We will make use of the following form of strong approximation:

Proposition 2.4.1. Maclachlan.Reid-[ArithmeticHyperbolic3Manifolds]2003 Let A

be a quaternion algebra over a number field k, and let S be a finite set of places of k such

that S ∩ Ω∞
k 6= and for at least one ν0 ∈ S, ν0 /∈ Ram(A). Then A1

kA
1
S is dense in A1

A.

2.5 SL2

Locally, the group of units in a quaternion algebra is isomorphic to SL2 almost every-

where. In this section, we review the structure theory of SL2 over fields, and then over local

rings, which we will directly use in the main theorem of this paper.

2.5.1 Over a field

To begin, we let Ω be an algebraically closed field of characteristic p ≥ 0. Define

SL2(Ω) = {g = ( a bc d ) ∈ GL2(Ω) | det(g) = ad− bc = 1}. (2.41)

Let u : Ω → SL2(Ω) be the homomorphism b 7→ u(b) = ( 1 b
0 1 ). Write U for its image, and set

w = ( 0 1
−1 0 ). Then the set U ∪ {w} generates SL2(Ω). In particular, for each b ∈ Ω× one has

s(b) := wu(b−1)wu(b)wu(b−1) =
(
b 0
0 b−1

)
(2.42)
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so that s is a-posteriori a homomorphism Ω× → SL2(Ω) (e.g. a co-character). Write A for

its image.

The relations among u, s, and w are given by the formulae:

1. w2 = s(−1)

2. u(b)u(b′) = u(b+ b′) for all b, b′ ∈ Ω

3. s(a)s(a′) = s(aa′) for all a, a′ ∈ Ω×

4. s(a)u(b)s(a−1) = u(ba2) for all b ∈ Ω and a ∈ Ω×.

An immediate consequence of last item above is that A normalizes U , so that the set B = AU

is in fact a subgroup of SL2(Ω) and as A ∩ B = {id}, the map A × U → B sending

(a, b) 7→ s(a)u(b) =
(
a ab
0 1/a

)
is a bijection.

One has the Bruhat decomposition

SL2(Ω) = BwB tB (2.43)

The big cell BwB consists of matrices ( a bc d ) with c 6= 0, and constitutes a single (left) U

orbit. Thus BwB = UwB, and the map U × A × U given by (b′, a, b) 7→ u(b′)ws(a)u(b) =(
−ab′ a−1(1+a2bb′)
−a −ab

)
is a bijection.

Proposition 2.5.1. Suzuki-[GroupTheory]2014 Suppose that Ω is an algebraically closed

field of characteristic p ≥ 0. Then

1. The center Z of SL2(Ω) is {id} if p = 2 and otherwise is cyclic of order 2, generated

by s(−1) = − id.

2. Every conjugacy class in SL2(Ω) has a representative of the form s(a) ∈ A for some

a ∈ Ω× or ±u(b) ∈ ZU for some b ∈ Ω.

3. if p 6= 2 then SL2(Ω) contains a unique element of order 2

4. Let x ∈ SL2(Ω) be an element with finite order n. Then x is conjugate to ±u(b) for

some nonzero b ∈ Ω if and only if p > 0 and p|n. In this case, x is either p or 2p.
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5. The normalizer of U in SL2(Ω) is B. If conjugation by x ∈ B fixes any nonidentity

element of U , then x ∈ ZU .

6. The centralizer in SL2(Ω) of any nonscalar element of A is A and the normalizer N(A)

in SL2(Ω) of any subgroup A′ of A containing at least 3 element is N(A) = 〈A,w〉.

7. The centralizer of any nonscalar element of SL2(Ω) is abelian.

Let F be a subfield of Ω. Then there is a natural inclusion SL2(F ) → SL(2,Ω), and the

homomorphisms s, u restrict to F×, F , mapping to subgroups A(F ), U(F ) ≤ SL2(F ) and

B(F ) = A(F )U(F ).

Projective spaces:

We recall that n-dimensional projective space over Ω is the set PnΩ of 1-dimensional Ω-

linear subspaces in Ωn+1, and that the linear action of GL(n+ 1,Ω) on Ωn+1 induces one of

PGL(n+ 1,Ω) = Ω×\ GL(n+ 1,Ω) on PnΩ. For any subfield F of Ω one can similarly define

PnΩ, on which PGL(n+ 1, F ) naturally acts. In particular, the projective line over F is the

quotient of F 2 \ {0} by the relation v ∼ v′ if v = λv′ for some λ ∈ F×. If v ∈ F 2 \ {0}, then

we write [v] for its equivalence class in P1(F ), and if v = ae1 + be2 then we write [v] = [a : b]

and refer to the pair (a, b) as homogeneous coordinates for [v]. We identify F with a subset

of P1(F ) via x 7→ [x : 1]. The complement of F in P1(F ) is the single point [0 : 1] = [e2]

which we denote by ∞, so that P1 = F ∪ {∞}.

In this model, the action of GL(2, F ) on P1
F is given by fractional linear transformations:

for

a b

c d

 ∈ GL(2, F ) one has

a b

c d

 z =


az+c
cz+d , z ∈ F

d, z = ∞.

(2.44)

Proposition 2.5.2. Let F be a subfield of the algebraically closed field Ω.

• The stabilizer of ∞ in SL2(F ) is B(F ) and the stabilizer of 0 is wB(F )w−1.
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• The pointwise stabilizer of the pair {0,∞} is B(F ) ∩ wB(F )w−1 = A(F ), while the

setwise stabilizer is its normalizer N(F ) := 〈A(F ), w〉.

• The subgroup U(F ) acts simply transitively on the set F = P1(F ) \ ∞.

• The orbits of A(F ) on F× = P1(F ) \ {0,∞} are in bijection with square classes

F×/(F×)2 in F×.

• A noncentral element g of SL2(F ) fixes at most two fixed points in P1
F .

We say that g is F -hyperbolic, F -parabolic, or F -elliptic if g fixes 2, 1, or 0 points in

P1
F , and refer to this descriptor as the F -type of g. It is clear that the F -type of an element

depends only on its SL2(F ) (or even GL(2, F ))) conjugacy class.

For an element x = ( a bc d ) ∈ M2(F ), we write

p(X;x) := det(XI2 − x) = X2 − trxX + detx ∈ F [X] (2.45)

for its characteristic polynomial and

δx := tr2 x− 4 det x ∈ F (2.46)

for its descriminant. Note that δx is invariant under conjugation by GL(2, F ), and that

p(X;x) has a pair of distinct roots in F if and only if δx is a square in F×. We write F [x]

for the subalgebra of M2(F ) generated by x, which is isomorphic to F [X]/(p(X;x)) and if

x is noncentral, coincides with the centralizer of x in M2(F ),

The following proposition relates the F -type of an element to other invariants of a con-

jugacy class.
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Proposition 2.5.3. Let g be a noncentral element of SL2(F ). The following equivalencas

hold:

g is F -hyperbolic ⇐⇒



g is conjugate in SL2(F ) to an element of A(F )

p(x; g) := x2 − tr gx+ 1 has a pair of distinct roots in F

δg := tr2 g − 4 is a square in F×

F [g] ∼= F × F as F - algebras

(2.47)

g is F -parabolic ⇐⇒



g is conjugate in SL2(F ) to an element of ZU(F )

p(x; g) := x2 − tr gx+ 1 has repeated roots in F

δg := tr2 g − 4 = 0

F [g] ∼= F [X]/(X2) as F - algebras

(2.48)

g is F -elliptic ⇐⇒



g is conjugate in SL2(Ω) to an element of A \ A(F )

p(x; g) := x2 − tr gx+ 1 has no roots in F

δg := tr2 g − 4 is not a square in F×

F [g] ∼= F [X]/(X2 − δg) is a quadratic extension of F

(2.49)

Remark 2.5.1. When F is algebraically closed, it is evident that no element is F -elliptic. If

F is not algebraically closed and g is F -elliptic, then g is F ′-hyperbolic for F ′ a quadratic

extension of F . Namely F ′ = F [
√
δg].

Unlike ellipticity and hyperbolicity, parabolicty is an absolute property: if g is F -

parabolic, then it is F ′ parabolic for any subfield or extension F ′ of F .

We will also make use of the following

Proposition 2.5.4. Suppose noncentral elements g, h ∈ SL2(F ) are F -parabolic elements,

having unique fixed points P and Q in P1
F respectively. If gh is also F -parabolic, then P = Q

Proof. Arguing by contraposition, suppose g and h have distinct fixed points. As the action

of SL2(F ) is doubly transitive on P1
F we may assume that P = 0 and Q = ∞. Then g
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and h take the form ± ( 1 0
x 1 ) and ±

(
1 y
0 1

)
respectively. Then gh = ±

(
1 y
x 1+xy

)
, which is not

parabolic unless xy = 0. But then at least one of g, h is central, a contradiction.

Corollary 2.5.1. Any subgroup of SL2(F ) consinsting of F -parabolic elements is conjugate

to a subgroup of ZU(F ).

2.5.2 The adjoint representation

The Lie algebra of SL2(F ) can be identified with

sl2(F ) = {X ∈ M(2, F ) : trX = 0} (2.50)

with Lie bracket given by the commutant [X,Y ] = XY − Y X. The group SL2(F ) acts on

its Lie algebra by conjugation, and we write Ad : SL2(F ) → GL(sl2(F )) for the resulting

representation.

The killing form is the nondegenerate symmetric bilinear form on sl2(F ) given by

B(X,Y ) = trXY, (2.51)

and the associated quadratic form is

Q(X) = B(X,X) = − detX. (2.52)

For δ ∈ F , we write O(δ) for the fiber

O(δ) = {X ∈ sl2(F ) : Q(X) = δ}. (2.53)

The adjoint representation preserves B:

B(Ad gX,Ad gY ) = B(X,Y ) for all g ∈ SL2(F ), X,Y ∈ sl2(F ) (2.54)

and consequently preserves the sets O(δ).

Concerning the orbits of SL2(F ) on sl2(F ) under Ad, we have
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Proposition 2.5.5. For each nonzero δ, the adjoint action of SL2(F ) on O(δ) is transitive.

The nilpotent cone

N = {X ∈ sl2(F ) : X2 = 0} (2.55)

in sl2(F ) is a nondegenerate quadric, and coincides with the fiber O(0) over 0.

By contrast to fibers over F× there are always more than one adjoint orbits in the

nilpotent cone, as 0 ∈ N . The situation is described in the following

Proposition 2.5.6. If F is algebraically closed, then the nonzero elements of the nilpotent

cone N ⊂ sl2(F ) form a single adjoint orbit. If F is any field, then the action of SL2(F ) on

the set of F -lines in N is transtive.

Proof. If X ∈ N then X2 = 0, as an endomorphism of k2. If X is nonzero, then there

exists an α ∈ GL(2, F ) such that αXα−1 = ( 0 1
0 0 ). If F is algebraically closed, then α′ =

(detα)−1/2α lies in SL2(F ) and does the same.

For the second claim, note that the equation Q(X,X) = − detX = 0 defines a rational

normal curve of degree 2 in P2
F = P(sl2(F )) on which SL2(F ) acts a group of projective linear

automorphisms. Any such action, so long as it is nontrivial, is transitive.

2.5.3 Over a local field

In this section R is local ring of characteristic zero with maximal ideal p, which is complete

with respect to the p-adic topology, F is its field of fractions, and f its residue field. We pick

once and for all a uniformizer $ for p. We write · : R → f for reduction modulo p, as well

its canonical extension to any algebra over R.

The structure theory of SL2 over a field comes into play in two ways with regard to the

structure of SL2(R): through its projection to SL2(f) and through its inclusion in SL2(F ).

For each n ≥ 1, there is a short exact sequence

1 → SL2(R, pn) → SL2(R) → SL2(R/pn) → 1 (2.56)
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where

SL2(R, pn) = {g ∈ SL2(R) : g ≡ id mod pn} (2.57)

is the congruence kernel of level pn. The group SL2(R) is a maximal compact open subgroup

of SL2(F ), and any maximal compact open subgroup in SL2(F ) is conjugate to SL2(R) by an

element of GL2(F ). The congurence kernels SL2(R, pn) constitute a neighbhood basis about

the identity.

Proposition 2.5.7. For each n ≥ 1, the map g 7→ $−n (g − id) induces an isomorphism

SL2(R, pn)/ SL2(R, pn+1) → sl2(f), where the latter is understood as the underlying abelian

group. Furthermore, this isomorphism intertwines the action of SL2(R) by conjugation on

the former, and the adjoint action on the latter.

Proof. For the first claim, all that needs to be checked is that the given map is in fact a

homomorphism. To this end, suppose g = id +$nX and h = id +$nY with X,Y ∈ M2(R).

Then

gh = id +$n(X + Y ) +$2nXY ≡ id +$n(X + Y ) mod pn+1 (2.58)

as desired. The second claim is self-evident.

Remark 2.5.2. The proof actually demonstrates that more generally, one has an isomorphism

SL2(R, pn)/ SL2(R, p2n) → sl2(R/p2n) as SL(2, R/p2n)-modules.

In preparation for the main theorem, we will need to characterize when a subgroup H

of SL2(R) is conjugate into a subgroup of SL2(R, pn) by an element of SL2(F ) or GL2(F ).

We remark that although SL2(R, pn) is normal in SL2(R), it is not normal in SL2(F ). For

each n, the set of α ∈ SL2(F ) such that α SL2(R, pn)α−1 ⊂ SL2(R) consists of finitely many

SL2(R) cosets.

The main result of this section is the following
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Proposition 2.5.8. Suppose H is a subgroup of SL2(R) satisfying

δh ≡ 0 mod p2n, for all h ∈ H (2.59)

Then H is conjugate in GL2(F ) to a subgroup of SL2(R, pn).

Proof. The argument is by induction. For the base case, suppose n = 1 and that H ≤ SL2(R)

is a subgroup satisfying

δh = (trdh)2 − 4 ≡ 0 mod p2 (2.60)

for all h ∈ H. Then by proposition  2.5.3 H consists entirely of f- parabolic elements, so that

by corollary  2.5.1 , H is conjugate in SL2(f) to a subgroup of ZU(f), where U(f) is the group

of upper triangular matrices in SL2(f). As the map SL2(R) → SL(2, f) is surjective, there is

an element α ∈ SL2(R) which reduces to α modulo p. Thus, after replacing H by an SL2(R)

conjugate, we may assume that each h in H may be written as

h = ±

1 x

0 1

+$γ

for some γ = ( a bc d ) ∈ M2(R).

Since H ≤ SL(2, R), one has deth = 1 for all h ∈ H, thus

1 = deth

= 1 + (a+ d− cx)$ + (ad− bc)$2

so that

(a+ d− cx)$ + (ad− bc)$2 = 0. (2.61)
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By hypothesis, we have (a + d)$ = trh ∓ 2 ≡ 0 mod p2 so that a + d ∈ p. Consequently,

xc ∈ p and as p is prime, it follows that at least one of x, c lies in p. If x ∈ p, then

h ∈ SL2(R, p) already. If this is so for all h ∈ H then the claim is proven.

Supposing otherwise, there exists a h = ( 1 x
0 1 ) + $ ( a bc d ) for which x ∈ R×. In this case

one has c ∈ p. Let α = ($ 0
0 1 ). Then

αgα−1 = ( 1 $x
0 1 ) +$

(
a $b

$−1c d

)

lies in SL2(R, p), completing the proof of the base case.

Now suppose that δh = tr2 h−4 ≡ 0 mod p2n for every h ∈ H. By inductive hypothesis,

after conjugating by an element of GL2(F ) if necessary, we may assume H ≤ SL2(R, pn−1).

Thus, each element h ∈ H can be written as

h = id +$n−1γ (2.62)

for some γ ∈ M2(R), and the assignment h 7→ γ identifies the image of H under reduction

mod pn with an additive subgroup of sl2(f).

Note that since tr2 h − 4 ≡ 0 mod p2n, one has tr γ ≡ 0 mod pn+1. Computing deter-

minants as in  2.62 ,

1 = deth

= 1 +$n−1 tr γ +$2n−2 det γ,

and since deth = 1, we find tr γ + $n−1 det γ = 0. From tr γ ≡ 0 mod pn+1 we find

$n−1 det γ ≡ 0 mod pn+1, so that det γ ≡ 0 mod p2. It follows that the image of H under

the composite map H → SL2(R, pn−1)\ SL2(R, pn) → sl2(f) is contained in the nilpotent

cone N (f) of sl2(f).
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By proposition  2.5.6 , we may replace H by an SL2(R)-conjugate so that each g ∈ H

takes the form g = 1 +$n−1γ where γ = ( 0 x
0 0 ) +$δ for some δ = ( a bc d ) ∈ M(2, kp). From

det γ = det(( 0 x
0 0 ) +$δ)

= $2 det δ −$xc ≡ $xc mod p2,

we find that xc ≡ 0 mod p, so that either x or c is in p. If x ∈ p, then h ∈ SL2(R, pn)

already. If this is so for all h ∈ H, then the claim is proven. Otherwise, suppose h has x ∈ R×

so that c ∈ p. Then, with α =

$ 0

0 1

, we find that αhα−1 ∈ SL2(R, pn) as claimed.
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3. SPECTRAL FLEXIBILITY

Given a closed, Riemannian manifold M with associated Laplace-Beltrami operator ∆M , the

operator ∆M acts on the space of L2 functions or L2 k-forms Ωk(M). We denote the asso-

ciated eigenvalue spectrum for the operator 4M acting on Ωk(M) by Ek(M). In the case of

k = 0, we denote the eigenvalue spectrum by E(M) and refer to this as the eigenvalue spec-

trum. The spectrum E(M) is a well studied analytic invariant of the Riemannian manifold

M and is known to determine the dimension, volume, and total scalar curvature. A related

geometric invariant is the primitive geodesic length spectrum Lp(M) of M . Assuming for

simplicity that M is negatively curved, each free homotopy class of closed curves on M has a

unique geodesic representative. We define Lp(M) to be the set of lengths (with multiplicity)

of each geodesic representative in each free homotopy class.

We denote by Hk(M,Z) the k th singular cohomology group of M with trivial Z-

coefficients. Given a finite coverM ′ → M , we have induced homomorphisms Res: Hk(M,Z) →

Hk (M ′,Z) and Cor : Hk (M ′,Z) → Hk(M,Z). For a pair of finite covers M1,M2 → M , we

say that a morphism ψk : Hk (M1,Z) → Hk (M2,Z) is compatible if the diagram

Hk(M,Z)

Hk (M1,Z) Hk (M2,Z)

Res

CoInd CoInd

Res

ψk

commutes. We say that M is large if there exists a finite index subgroup Γ0 ≤ π1(M) and

a surjective homomorphism of Γ0 to a non-abelian free group. The main theorem of this

section is the following:

Theorem 1. Let M be a closed hyperbolic n-manifold that is large and nonarithmetic. Then

for j ∈ Z>1 there exist pairwise non-isometric, finite Riemannian covers M1, . . . ,Mj → M

such that for all 1 ≤ i, i′ ≤ j

1. Mi and Mi′ are strongly isospectral: Ek(Mi) = Ek(Mi′) for all 0 ≤ k ≤ n

31



2. Mi and Mi′ are length isospectral: Lp(Mi) = Lp(Mi′)

3. For each k, there exists an isomorphism Hk(Mi,Z) → Hk(Mi′ ,Z) which is compatible

with the covering maps Mi,Mi′ → M .

3.1 Preliminaries

We begin with some background on hyperbolic manifolds, their fundamental groups, and

relations in cohomology.

3.1.1 Real and Complex hyperbolic spaces

Let K be R or C. Then K-hyperbolic n-space is the Riemannian symmetric space asso-

ciated to the group GK of matrices in SL(n+ 1,K) preserving the form

Bn,1
K (x, y) :=


−xn+1yn+1 +∑n

j=1 xjyj if K = R

−wn+1zn+1 +∑n
j=1 wjzj is K = C,

(3.1)

so that

GK =


SO(n, 1) K = R,

SU(n, 1) K = C.
(3.2)

The group of orientation preserving isometries of Hn
K is then the adjoint form PGK =

GK/Z(GK) of GK. For a discrete subgroup Γ ≤ Isom(Hn
K), the quotient Γ\Hn

K is a K-

hyperbolic n-orbifold, and a manifold provided Γ contains no elements of finite order. We

say that Γ is a lattice in Isom(Hn
K) provided the quotient Γ\Hn

K has finite volume, and

a uniform lattice if it furthermore is compact. For K = R, one has a converse to this

construction: given a complete real hyperbolic nmanifold M , via the action of π1(M) on

the universal cover Hn
R, we obtain an injective homomorphism π1(M) → Isom(Hn

R). If fur-

thermore M has finite volume (resp. is compact) then the image of this representation is
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a lattice (resp. is a cocompact lattice). As this representation depends on a choice of lift

p̃ ∈ Hn
R of the base point p, the representation is only unique up to conjugation in Isom(Hn

R).

We say that a pair of subgroups Γ,Γ′ ≤ PGK are commensurable if the intersection

Γ ∩ Γ′ has finite index in both Γ and Γ′. The commensurator of Γ in GK is

Comm(Γ) =
{
g ∈ PG : g−1Γg,Γ are commensurable

}
. (3.3)

By a celebrated theorem of Margulis Margulis-[DiscreteSubgroupsSemisimple]1991,

for any lattice Γ ∈ PGK one has a dichotomy: either

1. | Comm(Γ) : Γ| is finite, in which case we say Γ is non-arithmetic, or

2. Comm(Γ) is dense in GK (in the analytic topology), in which case we say Γ is arith-

metic.

Remark 3.1.1. This dichotomy holds for lattices in any semisimple Lie group, and our ter-

minology coincides with any of the more sophisticated definitions of arithmeticity.

When Γ ≤ GK is discrete and torsion free, the associated K-hyperbolic manifold Γ\Hn
K is

a classifying space for Γ (a K(Γ, 1)-space) as its universal cover Hn
K is contractible. We will

use this fact to translate claims concerning (co)homology groups for these manifolds into

statements about the group co(homology) of their fundamental groups.

3.2 Isomorphisms in group cohomology

Given a commutative ring R with identity, a group G, and a pair of subgroups P1, P2 ≤ G,

we say that P1, P2 are R-equivalent if R[G/P1] and R[G/P2] are isomorphic as left R[G]

modules. When P1 and P2 are Q equivalent the triple (G,P1, P2) is called a Gassmann-

triple. For general R, the triple is called an R-Gassmann triple.

In this section, we will summarize some basic results that link the group cohomology of

Z-equivalent groups.
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3.2.1 (co)Restriction, (co)Induction

Fix a commutative ring R with 1. Given a group G and a subgroup P , we denote by ResGP
the restriction functor R[G]−Mod → R[H]−Mod. Restriction admits left and right adjoints

respectively given by induction IndGP and coinduction coIndGP : for an R[H] module A, the

underlying R-modules are

IndGP (A) = R[G] ⊗R[P ] A, coIndGP (A) = homR[P ](R[G], A) (3.4)

with R[G] module structure given by the R-linear extension of

g · (x⊗ a) = gx⊗ a, (g · ϕ)(x) = ϕ(xg) (3.5)

respectively. We will make use of the following

Lemma 3.2.1. Suppose P is a finite index subgroup of G, A is an R[G] module, and B is

an R[H] module. Then there are isomorphisms of R[G] modules:

IndGP (A) ∼= coIndGP (A) (3.6)

A⊗R[G] IndGP (B) ∼= IndGP (ResPG(A) ⊗R[P ] B) (3.7)

coIndGP (ResGP (A)) ∼= A⊗R R[G/P ] (3.8)

Given a groupG with subgroups P1, P2, we say that a morphism ψk : Hk
(
P1,ResGP1(A)

)
→

Hk
(
P2,ResGP2(A)

)
is compatible if the diagram

Hk(G,A)

Hk
(
P1,ResGP1(A)

)
Hk

(
P2,ResGP2(A)

)

Res

CoInd CoInd

Res

ψk

commutes.
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Lemma 3.2.2. Let G be a finite group and P1, P2 ≤ G be Z-equivalent subgroups. Then

for any Z[G]−-module A and any nonnegative integer k, there is a compatible isomorphism

Hk
(
P1,ResGP1(A)

)
→ Hk

(
P2,ResGp2(A)

)
.

Proof. By Shapiro’s lemma (see Brown-[CohomologyGroups]2012), we have

Hk
(
Pi,ResGPi

(A)
)

= Hk
(
G,CoIndGPi

(
ResGPi

(A)
)
.
)

By Lemma  3.2.1 the coefficients for the latter cohomology groups are A⊗ zZ [G/Pi], viewed

as Z[G]-modules. Since P1 and P2 are Z-equivalent, these coefficient modules are Z[G]-

isomorphic. Thus, the right hand side of the equality above is actually independent of i,

providing the isomorphism as claimed. Compatibility follows from the naturality of the

isomorphism in Shapiro’s lemma. Specifically, upon choosing an isomorphism of the Z[G]-

modules Z [G/P1] and Z [G/P2], isomorphisms in cohomology groups

Hk
(
P1,ResGP1(A)

)
→ Hk

(
G,CoIndGP1

(
ResGP1(A)

))
→

Hk
(
G,CoIndGP2

(
ResGP2(A)

))
→ Hk

(
P2,ResGP1(A)

)

are induced by isomorphisms of coefficients.

Suppose now that Γ is any group, and ψ : Γ → G is a surjective homomorphism, and set

Γi = ψ−1(Pi). Then Γ1,Γ2 ≤ Γ are Z-equivalent. The following assertions are consequences

of lemmas  3.2.1 , 3.2.2 .

Lemma 3.2.3. Let ψ : Γ → G be a surjective homomorphism, P1, P2 ≤ G be Z-equivalent

subgroups, and Γi = ψ−1 (Pi). Then for any Z[Γ]-module A and any nonnegative integer k,

there is a compatible isomorphism Hk
(
Γ1,ResΓ

Γ1(A)
)

→ Hk
(
Γ2,ResΓ

Γ2(A)
)

By letting A be a trivial Z[Γ]-module (meaning: any module on which Z[Γ] acts trivially)

in lemma  3.2.3 , one obtains

Corollary 3.2.1. Let ψ : Γ → G be a surjective homomorphism, P1, P2 ≤ G be Z-equivalent

subgroups, and Γi = ψ−1 (Pi). Then for any trivial Z[Γ]-module A and any nonnegative

integer k, there is a compatible isomorphism Hk (Γ1, A) → Hk (Γ2, A)
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3.3 Proof of theorem  1 

The main goal of this section is the following construction of arbitrarily large families

of finite index subgroups of certain lattices that are pairwise non-isomorphic and pairwise

Z-equivalent.

Throughout this section, for each r ∈ N, we will denote the free group of rank r by Fr.

Proposition 3.3.1. Let G be a simple Lie group that is not isogenous to SL(2,R) and let

Γ ≤ G be a lattice that is large and non-arithmetic. Then for each j ∈ N, there exist finite

index subgroups ∆1, . . . ,∆j ≤ Γ such that

1. The subgroups ∆i are pairwise non-isomorphic.

2. The subgroups ∆i are pairwise Z-equivalent.

We note that this proposition holds when G is isogenous to SL(2,R) but with (a) changed

to the conition that the subgroups ∆i are pairwise non-conjugate in G.

Lemma 3.3.1. If Q is a finite group that is minimally generated by rQ elements, then

|Homsur (Fr, Q)| ≥ |Q|r−rQ for all r ≥ rQ.

Proof. Given r ≥ rQ, let Xr = {x1, . . . , xr} and let Fr = F (Xr) be the free group generated

by Xr. We can view FrQ
≤ Fr by FrQ

=
〈
x1, . . . , xrQ

〉
. Fixing ϕ ∈ Homsur

(
FrQ

, Q
)
, for

each qrQ+1, . . . , qr ∈ Q, we define Φ : Fr → Q to be the unique homomorphism induced by

the function f : Xr → Q given by

f (xj) =

 ϕ (xj) , j ≤ rQ,

qj, j > rQ.

Since ϕ is surjective, the homomorphisms Φ are surjective and distinct for all distinct (as

ordered sets) choices of qrQ+1, . . . , qr. Hence |Homsur (Fr, Q)| ≥ |Q|r−rQ

We will make use of the following theorem of Hall HALL-[EULERIANFUNCTIONSGROUP]1936:

Theorem 3.3.1. Let Q be a non-abelian finite simple group and Γ be a finitely generated

group. If ϕ1, . . . , ϕm ∈ Homsur (Γ, Q) and ϕi 6= θ ◦ ϕj for all θ ∈ Aut(Q) and all i 6= j, then

ϕ1 × · · · × ϕm : Γ → Qm is surjective.
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Proof of Proposition  3.3.1 . We begin by setting Xr(Q) def= Homsur (Fr, Q) /Aut(Q) where

the action of Aut(Q) on Homsur (Fr, Q) is given by post-composition. By Lemma 4.], we

see that βr,Q = |Xr(Q)| ≥ α−1
Q |Q|r−rQ where αQ = | Aut(Q)|. For each equivalence class x in

Xr(Q), we fix a representative ϕx ∈ Homsur (Fr, Q). By Theorem 4.3, we have a surjective

homomorphism Φr : Fr → QβrQ given by Φr = ∏
x∈Xr(Q) ϕx. Fixing Q = PSL (2,F29) and

setting P1, P2 ≤ Q to be the Z-equivalent subgroups given by Scott [39], for each m ∈ N

and z = (zi) = {1, 2}m, we define Pz ≤ Qm to be the subgroup Pz
def= ∏m

i=1 Pzi
. It follows

that for any distinct z, z′ ∈ {1, 2}m that Pz, Pz′ are Z-equivalent and non-conjugate in Qm.

In particular, Qm has 2m pairwise nonconjugate, pairwise Z-equivalent subgroups.

Now, given a large, non-arithmetic lattice Γ ≤ G and j ∈ N, we must find finite index sub-

groups ∆1, . . . ,∆j ≤ Γ that are pairwise non-isomorphic and pairwise Z-equivalent. Since Γ

is non-arithmetic, combining Mostow-Prasad (see Mostow-[StrongRigidityLocally]1973

and Prasad-[StrongRigidityQrank]1973) and Margulis Margulis-[DiscreteSubgroupsSemisimple]1991

there exists a constant CΓ ∈ N such that if ∆ ≤ Γ is a finite index subgroup, there are at most

CΓ non-conjugate subgroups of Γ that are isomorphic to ∆ as an abstract group. Explicitly,

CΓ = [Comm(Γ) : Γ] and so when Λ ≤ Γ is a finite index subgroup, we have CΛ = CΓ[Γ : Λ].

As Γ is also large, there exists a finite index subgroup Γ2 ≤ Γ and a surjective homomor-

phism ψ : Γ2 → F2. Given any r ≥ 3, there exists a subgroup Fr ≤ F2 of index r − 1

such that Fr is a free group of rank r. To see this, we first note that we have a surjective

homomorphism F2 → Z given by sending a = 1 and b = 0, where {a, b} is a free basis for

F2. We compose this surjection with the surjective homomorphism Z → Z/(r − 1)Z given

by reduction modulo r − 1. The kernel of the homomorphism F2 → Z → Z/(r − 1)Z has

index r− 1 in F2. It follows by the Nielsen-Schreier theorem that this subgroup of F2 is free

and of rank r. Setting Γr = ψ−1 (Fr), we see that there exists subgroups Γr ≤ Γ2 ≤ Γ and

surjective homomorphisms ψr : Γr → Fr with [Γ2 : Γr] = r − 1. Now, for the given j ∈ N,

we select r such that 2βr,Q ≥ j(r− 1)CΓ2 . Note that this can be done since βr,Q ≥ α−1
Q |Q|r−2

grows exponentially as a function of r whereas (r − 1)CΓ2 only grows linearly as a function

of r. By selection of Γr and r, we have the surjective homomorphism µr : Γr → Qβr,Q.
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For each z ∈ {1, 2}βrQ, we define ∆z = µ−1
r (Pz) and note that the subgroups ∆z are

pairwise non-conjugate in Γr and are pairwise Z-equivalent. There are 2βr,Q such subgroups

and we know that for each ∆z, there are at most CΓr subgroups from this list that can be

abstractly isomorphic to a fixed ∆z. As CΓr = (r − 1)CΓ2 and 2βr,Q ≥ j(r − 1)CΓ2 , there is

a subset of these subgroups of size at least j that are all pairwise non-isomorphic.

We are now prepared to prove theorem  1 .

Proof of theorem  1 . By theorem 9.2 in Agol-[VirtualHakenConjecture]2013, every closed

hyperbolic 3-manifold is large. In higher dimensions, via the construction of Gromov-

Piatetski-Shapiro, there exists infinitely many commensurability classes of complete, finite

volume hyperbolic n-manifolds that are both non-arithmetic and large. We can apply Propo-

sition  3.3.1 to any manifold M in the above classes. We have opted to only write out the

case when M is a closed hyperbolic n-manifold as the complex hyperbolic setting is logically

identical.

Given j ∈ N, n ≥ 3, and a closed hyperbolic n-manifold M which is non-arithmetic

and large, we can apply Proposition  3.3.1 with Γ = π1(M). We obtain j pairwise non-

isomorphic, finite index subgroup ∆1, . . . ,∆j that are Z-equivalent. By Corollary 3.5, for

any abelian group A endowed with a trivial Z[Γ]-module structure, we obtain compatible

isomorphisms between the cohomology groups Hk (∆i, A) and Hk (∆i′ , A) for all k and all

i, i′. Since M is aspherical, M is a K(Γ, 1) for Γ. Setting Mi to be the associated finite

covers corresponding to ∆i, we see that Mi is a K (∆i, 1) for all i. In particular, we have

that Hk (Mi, A) and Hk (∆i, A) are compatibly isomorphic; the compatibility of the isomor-

phisms between Hk (∆i, A) and Hk (∆i′ , A) produce compatible isomorphisms between the

cohomology groups Hk (Mi, A) and Hk (Mi′ , A). As the groups ∆i,∆i′ are not isomorphic,

by Mostow-Prasad rigidity the manifolds Mi,Mi′ are not isometric. Taking A = Z produces

(3) of Theorem  1 . The proof of Theorem  1 is completed by noting that Z-equivalence im-

plies Q-equivalence and Q-equivalence implies the manifolds Mi,Mi′ satisfy (1) and (2) by

Sunada-[RiemannianCoveringsIsospectral]1985.
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4. SPECTRAL RIGIDITY

In preparation for the main theorem of this chapter, we first establish some notations and

definitions.

4.1 Some basic hyperbolic geometry

We take the upper half plane

H = {x+ iy ∈ C : y > 0}

equipped with the Riemannian metric

ghyp = dx2 + dy2

y2

is a model for the hyperbolic plane: the unique simply connected, complete Riemannian

manifold with scalar curvature −1. The invariant volume element for this metric is given by

d volghyp = dx dy
y2 ,

and the Laplace operator is

∆ghyp = 1
y2

(
∂2

∂x2 + ∂2

∂y2

)

The group

SL2(R) =


a b

c d

 : ad− bc = 1


acts isometrically on (H, ds2) via linear fractional transformations

a b

c d

 z = az + b

cz + d
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where ( a bc d ) ∈ SL2(R). This action factors through PSL2(R) which can be identified with

the full group of orientation preserving isometries of (H, ds2).

The translation length of an element g ∈ SL2(R) is

τ(g) = inf{dist(gx, x) : x ∈ H}. (4.1)

Recalling the trichotomy of proposition  2.5.3 for elements of SL2(R) we classify isometries

of H2 as follows:

A noncentral element g ∈ SL2(R) is

Hyperbolic if τ(g) > 0

Elliptic if τ(g) = 0 and the function x 7→ d(gx, x) attains its minimum in H2, and

Parabolic if τ(g) = 0 but dist(gx, x) > 0 for all x ∈ H.

If Γ is a discrete subgroup of SL2(R) then the quotient Γ\H2 is a hyperbolic 2-orbifold.

When Γ is a torsion free uniform lattice in SL2(R), the quotient Γ\H2 is in fact a closed

hyperbolic surface, and each noncentral element is hyperbolic. In this case, there is a bijection

between the conjugacy classes in Γ and closed geodesics in Γ\H2. If γ ⊂ Γ is a such a class,

and g ∈ γ is a representative, then the length `(γ) of γ is τ(g). As g is hyperbolic, modulo

±1, it is conjugate to a unique matrix of the form
(
λg

λ−1
g

)
where λg ∈ R>0 and λg > λ−1

g .

In this case, the translation length τ(g) is related to λg by the formula

τ(g) = 2 log λg, (4.2)

which in turn, can be expressed in terms of tr(g) = λg + λ−1
g . Indeed, {λ±1

g } are the roots of

the characterstic polynomial x2 − tr gx+ 1 so that λ±1
g = tr g±

√
tr(g)2−4
2 so that

| tr g| = eτ(g)/2 + e−τ(g)/2 = 2 cosh τ(g)/2. (4.3)

A converse to this construction is given by the following
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Proposition 4.1.1 (Uniformization). Let (M, g) be a smooth compact surface with constant

scalar curvature −1. Then there exists a cocompact lattice Γ < SL2(R) which is torsion free

modulo ±1, and consists only of hyperbolic elements such that (M, g) is isometric to Γ\H.

Up to conjugation in SL2(R) the lattice Γ is uniquely determined by the Riemannian metric

on M .

4.2 Arithmetic hyperbolic 2- and 3-manifolds

Let A be a quaternion algebra over a number field k, where k has r1 real and r2 complex

places. Note, then, that r1 +2r2 = n = dimQ(k). Let σ1, . . . σn denote the distinct embedings

of k into C, and write kνi
for the completion of k with respect to the archimedian place νi

corresponding σi. We arrange the indices so that kνi
∼= R for 1 ≤ i ≤ r1 while kνi

∼= C for

r1 + 1 ≤ i ≤ n. Over each real place ν, one has

Aν ∼=


M(2,R) if ν /∈ Ram∞(A)

H if ν ∈ Ram∞(A)
(4.4)

where H is the Hamiltonian quaternions, which is the unique quaternion division algebra

over R. Over each complex place ν, one has Aν ∼= M(2,C). The situation is summarized in

the following

Proposition 4.2.1. Maclachlan.Reid-[ArithmeticHyperbolic3Manifolds]2003 If A

is ramified at s real places, then

A⊗Q R ∼= sH ⊕ (r1 − s)M(2,R) ⊕ r2M(2,C). (4.5)

For each i ≤ n, let ρi denote the composition of the natural inclusion A → A⊗Q R with

the projection onto the i-th factor in the decomposition  4.5 . For i ≤ r1, the reduced norm

and trace maps are related by

trd ◦ρi = σi ◦ trd, nrd ◦ρi = σi ◦ nrd, (4.6)
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while for i > r1 the same is true up to a possible twist by complex conjugation. In particular,

it follows that the image of the kernel A1 under ρi of the reduced norm map nrd : A× → k×

lies in the semisimple Lie group SL2(R) if i ≤ r1 and A is unramified over νi, and in SL2(C)

if i > r1.

The cases of principal interest to this paper are when either

• r2 = 0 and s = r1 − 1 so that k is totally real, and A is unramified over exactly one

real place of k, or

• r1 = s and r2 = 1 so that k is ramified over all of its real places, and has a unique

complex place, over which A is necessarily unramified.

For reasons that will become apparent momentarily, we refer to such a quaternion algebra

A as Fuchsian type (F-t) or Kleinian type (K-t), respectively.

In any case, so long as there exists at least one archimedian place ν ∈ Ωk over which A is

unramified, the composition of the natural inclusion A → A⊗Q R of proposition  4.2.1 with

the projection onto the unramified factors we obtain an embedding

ψ : A → (r1 − s) M2(R) ⊕ r2 M2(C). (4.7)

and any other such embedding will differ from ψ by a conjugation in GL2(R)r1−s⊕GL2(C)r2 .

Recall from section  2.3 that an order O in a quaternion algebra A over a field k with ring

of integers R is a subring containing 1, which is finitely generated as a module over R, and

which generates A as a k-vectorspace. Orders are natural analogues of rings of integers in

noncommutative algebras, and serve as an essential source of locally symmetric spaces via

the following observation:

Proposition 4.2.2. Maclachlan.Reid-[ArithmeticHyperbolic3Manifolds]2003 Let O

be an order in a quaternion algebra A over a number field k, such that A is unramified over

at least one nonarchimedean place. Set O1 = O ∩ A1. Then, with the embedding ψ given in

 4.7 , the image ψ(O1) is an irreducibles lattice in SL2(R)r1−s × SL2(C)r2. If, in addition, A

is a quaternion division algebra, then this lattice is cocompact.
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4.2.1 Arithmetic Fuchsian and Kleinian groups

When the quaternion algebra A is a Fuchsian or Kleinian type (cf.  4.2 ), the image

ΓO := ψ(O1) is a lattice in SL2(R) or SL2(C), respectively. The group ΓO is called an

arithmetdic Fuchsian or Kleinian group, respectively, and the associated locally symmetric

space is a finite volume hyperbolic 2- or 3-orbifold. More generally, we say that a lattice

Λ in SL2(R) or SL2(C) is arithmetic if there exists a quaternion algebra A of Fuchsian

or Kleinian type, and an order O in A, such that Λ is commesnurable, in the wide sense,

with ψ(O1), where ψ is any embedding of A in M2(R) or M2(C) as in  4.7 . We say that

an arithemtic Fuchsian or Kleinian lattice Λ is derived from a quaternion algebra A if

there is an order O in A such that Λ is conjugate to a subgroup of ΓO, rather than merely

commensurable with it.

Remark 4.2.1. We remark briefly that this definition of arithmeticity is inherently invariant

up to conjugation in GL(2,R) and GL(2,C). This, in turn, is tantamount to arithemticity

being a property intrinsic to the underlying Riemannian orbifold. We shall later see, and will

make essential use of the fact that arithmeticity in dimensions 2 and 3 is actually a spectral

invariant.

4.2.2 Congruence lattices

A large, albeit not exhaustive, supply of arithmetic Fuchsian and Kleinian groups arise

from the family of congruence subgroups, which are defined as follows.

Fix a quaternion algebra A of Fuchsian or Kleinian type over a field k with ring of integers

R, and an R-order O in A. For any integral ideal a ⊂ O in k, the set

aO = {ax : a ∈ a, x ∈ O} (4.8)

is a two sided O-ideal. Hence, the reduction map πa : O → O/aO is an epimorphism of

R-algebras, with the latter being a finite algebra over R/a. This induces an epimorphism of
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groups O1 → (O/aO)1. The principal congruence subgroup of level a is defined as the

kernel of this map, i.e.

O1(a) := O1 ∩ (1 + aO) = {x ∈ O1 : x ≡ 1 mod aO}. (4.9)

With ψ an embedding as in  4.7 , we write ΓO(a) := ψ(O1(a)) for its image in SL(2,R) or

SL(2,C), and XO(a) for the corresponding locally symmetric space.

The inclusion ΓO(a) → ΓO as a normal subgroup induces a regular cover XO(a) → XO

with deck group isomorphic to ΓO(a)\ΓO ∼= (O/aO)1.

Definition 4.2.1. We say A is of

• Fuchsian-type if: k is totally real, and A is unramified over exactly one real place

νo. In thise case, we use νo to identify k with a subfield of R, and replace νo-subscripts

with R. Thus if A is of fuchsian type, one has

GR ≈ GL2(R), GR ≈ SL2(R), ḠR ≈ PGL2(R) (4.10)

• Kleinian-type if: k has exactly one complex place νo, and A is ramified over all real

places. In this case, use νo to identify k with a subfield of C, and replace νo-subscripts

with C. Thus if A is of Kleinian type, one has

GC ≈ GL2(C), GC ≈ SL2(C), ḠC ≈ PGL2(C) (4.11)

If A is a quaternion algebra of Fuchsian or Kleinian type, we pick once and for all the

isomorphisms in  4.10 and  4.11 respectively.

If A is of Fuchsian (resp. Kleinian) type then for any order O, ΓO is a lattice in GR ≈

SL2(R) (reps. in GC ≈ SL2(R)). We call ΓO the arithmetic lattice associated to O.

Let H be hyperbolic 2- or 3-space, according to whether A is Fuchsian or Kleinian. Then

ΓO acts on H properly discontinuously by isometries, and we write X(ΓO) for the quotient

orbifold ΓO\H.

Definition 4.2.2. .
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1. A subgroup Λ of SL2(R) (resp. SL2(C)) is arithmetic if there exists a quaternion

algebra A over a number field k of Fuchsian (resp. Kleinian) type and an order O

in A such that Λ is commensurable (in the wide sense) with the arithmetic lattice ΓO

associated to O.

2. We say that Λ is derived from O if it is conjugate in SL2(R) (resp. SL2(C)) to a

subgroup of ΓO.

3. Say that Λ is derived from A if it is derived from some order in A. If M is a

hyperbolic −or- manifold, we say that M is arithmetic (resp. derived from an order

O or a quaternion algebra A) if there exists an arithmetic lattice Λ such that M is

isometric to Λ\H for some arithmetic lattfice Λ (resp. arithmetic lattice derived from

O or A).

4.2.3 Invariants of arithmetic Fuchsian and Kleinian groups

Let Λ be a subgroup of SL2(C). Write tr Λ for the set {tr g : g ∈ Λ} ⊂ C and Q(tr Λ) for

the trace field of Λ, the subfield of C generated by tr Λ. We write

A0Λ = {
∑
i

aigi : ai ∈ Q tr Λ, gi ∈ Λ},

for the subring of M2(C) generated by Λ as an algebra over Q tr Λ. Then we have

Proposition 4.2.3. Suppose Λ is a finitely generated, nonelementary subgroup of SL2(C).

Then A0Λ is a quaternion algebra over Q tr Γ. Furthermore

1. If Λ is a lattice in SL2(C) or an arithmetic lattice in SL2(R) then Q tr Λ is a number

field.

2. Λ is conjugate to a subgroup of SL2(R) if and only if Q tr Λ is contained R ⊂ C.

3. If Λ is an arithmetic lattice in SL2(C) or SL2(R), then Λ is derived from A0Λ if and

only if tr Λ consists of algebraic integers in Q tr Λ.

The following basic facts will be used in what follows.
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Proposition 4.2.4. Let K = R or C.

1. If O,O′ are two orders in a quaternion algebra A, then ΓO and ΓO′ are commensurable

in G = A1. Consequently, the property of being commensurable in GK to an order in

A depends only on A.

2. If O,O′ are orders in quaternion algebras A,A′ over number fields k, k′ with AK =

A′
K such that ΓO is commensurable to Γ′

O in A1
K = A11

K then k = k′ and A = A′.

Consequently, the quaternion algebra is an invariant of the commensurability class of

an arithmetic lattice in SL2(K).

3. The quaternion algebra of an arithmetic lattice in SL2(K) is a complete invariant of

its commensurability class.

4. An arithmetic lattice is cocompact if and only if its quaternion algebra is a division

algebra.

The following theorem asserts that arithmeticity of a Fuchsian or Kleianian group can

be detected by the set of traces of its elements.

Proposition 4.2.5 (Takeuchi Takeuchi-[CharacterizationArithmeticFuchsian]1975).

Let Γ be a Fuchsian or Kleinian group of the first kind. Then Γ is an arithmetic Fuchsian

or Kleinian group derived from a quaternion algebra if and only if Γ satisfies the following

conditions

1. The subfield k of C, generated over Q by the traces of elements of Γ, has finite degree

over Q

2. tr(Γ) is contained in the ring of integers Rk of k

3. For any isomorphism ϕ : k → C such that ϕ 6= id, the set ϕ(tr(Γ)) is bounded in C.

We will also make use of the following theorem

Proposition 4.2.6 ( Reid-[IsospectralityCommensurabilityArithmetic]1992). Let

M1 and M2 be isospectral arithmetic hyperbolic 2 or 3 manifolds. Then M1 and M2 are

commensurable.
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4.3 Main Theorem

The main theorem of this section is the following:

Theorem 2. Let A be a quaternion algebra over a number field k of Fuchsian (resp. Kleinian)

type. Let O be a maximal order in A, and a be an integral ideal in k. Let ΓO(a) be the princi-

pal congruence arithmetic lattice in SL2(R) (resp. SL2(C)) of level a, and let X(ΓO(a)) be the

associated hyperbolic 2-orbifold ΓO(a)\H2 (resp. hyperbolic 3-orbifold ΓO(a)\H3). Suppose

that

1. A has type number 1, and

2. a is not divisible by any prime over which A is ramified.

Then X(ΓO(a)) is absolutely spectrally rigid.

Proof. First suppose that A is of Fuchsian type, and let (M, g) be a closed Riemannian mani-

fold which is isospectral toX(Γ0(a)). By corollary  2.1.1 we find that dimM = dimX(Γ0(a)) =

2. As X(Γ0(a)) has constant scalar curvature −1, we may conclude by proposition  2.1.3 that

so too does (M, g). By the Uniformization theorem of  4.1.1 , there exist a cocompact Fuchsian

lattice Λ ≤ SL2(R) such that (M, g) is isometric to Λ\H. By the Selberg’s trace formula, the

equality of the Laplace spectra for Λ\H and ΓO(a)\H is equivalent to the equality of their

length spectra. From the relation  4.3 between the length of a geodesic and the trace of the

corresponding hyperbolic translation, we conclude the equality of trace sets tr Λ = tr ΓO(a).

Applying Takeuchi’s classification of arithmetic Fuchsian groups of proposition  4.2.5 we find

that Λ is an arithmetic Fuchsian lattice, and that it is derived from its invariant quaternion

algebra. Applying  4.2.6 , we find that Λ and ΓO(a) are furthermore commensurable. Thus

there exists some maximal order O′ in A such that Λ is conjugate in SL2(R) to a finite index

subgroup of ΓO′ . By assumption, there is a unique A× conjugacy class of maximal orders in

A, so we can in fact take O′ = O.
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To summarize, if (M, g) is any closed Riemannian manifold which is isospectral to

ΓO(a)\H, then (M, g) is isometric to Λ\H for some finite index subgroup Λ of ΓO = O1 ≤

A1 ≤ SL2(R). Furthermore, observe that

vol(M, g) = vol(Λ\H) = |ΓO : Λ| vol(ΓO\H) (4.12)

and by  2.1.1 we

vol(M, g) = vol(ΓO(a)\H) = |ΓO : ΓO(a)| vol(ΓO\H) (4.13)

so that |ΓO : Λ| = |ΓO : ΓO(a)|.

To complete the proof of theorem  2 , we will show the following

Lemma 4.3.1. Let k be a number field with ring of integers R. Let A be a quaternion

algebra over k, O be a maximal order in A, and a be an ideal in R. If H is any subgroup

of O1 such that such that trH ⊆ tr ΓO(a), then in fact H is conjugate, by an element of

G̃(k) = A×, to a subgroup of ΓO(a) = (1 + aO) ∩ O1.

To this end, first we identify the set tr(ΓO(a)) ⊂ R:

Lemma 4.3.2. Let A be a quaternion algebra over a number field or a nonarchimedean local

field k with ring of integers R. Let O be a maximal order in A and a an ideal in R. Then

tr ΓO(a) = {t : t2 − 4 ≡ 0 mod a2}. (4.14)

Proof. First suppose k is a nonarchimedean local field, so that a = pn for some n ≥ 0 where

p is the unique maximal ideal of R. Pick a uniformizer $ ∈ R for p.

If A is unramified over p, then there exists an isomorphism A ∼= M2(k) and any two

such isomorphisms differ by an inner automorphism by A× ∼= GL2(k). Choose such an
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isomorphism which induces an isomorphism of O with M2(R), and in turn O1 with SL2(R).

Suppose now that g ∈ SL2(R) is of the form g = 1 +$nh for some h ∈ M2(R). Then

det g = nrd(1 +$nh)

= 1 +$n trh+$2n deth,

and since det g = 1, we find trh+$n deth = 0, and in turn

(tr g − 2)$−2n = tr(h)$−n = deth ∈ R,

so that tr g = 2 mod $2nR as claimed.

Conversely, suppose t ∈ R takes the form 2 ± $2ns for some s ∈ R. Then the matrix

g =

1 + s$2 $n

s$n 1

 satisfies tr g = t, det g = 1, and g ≡ ± id mod pn.

Now suppose k is a number field. Then the claim follows from a routine application of

local to global principle.

Lemma 4.3.3. Let A be a quaternion algebra over a number field k with ring of integers

R, and let O be a maximal order in A. Let a be an ideal of R which is coprime to the

discriminant of A, and suppose H is a subgroup of O1 such that trH ⊆ tr ΓO(a). Then there

exists an α ∈ A× such that αHα−1 ≤ O1(a).

Proof. Given the description of tr Γ1
O(a) of lemma  4.3.2 , we see that if p is a prime in R with

pep||a then for all h ∈ H, one has δh = trdh2 − 4 ≡ 0 mod p2ep , and by assumption A is

unramified over p, so that O1
p

∼= SL2(Rp) in A1
p SL2(kp). By proposition  2.5.8 , there exists

an αp ∈ A×
p such that

αpHα
−1
p ⊂ O1

p(a) ∼= SL2(Rp, p
ep) (4.15)

Furthermore, adjusting αp by an element of GL2(Rp) does not effect equation  4.15 as the

latter normalizes SL2(Rp, p
ep).
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Let α′ be the element of A×
A which is αp at each prime p dividing a and 1 at all other

places. Then α′ is a well-defined element of A×
A by the strong approximation theorem  2.4.1 

there exists a representative α ∈ A× of the coset α′Ô1 ∈ A1
A where Ô is the adelic completion

of O. Then αHα−1 ⊂ O1(a) as desired.

To conclude the proof of the main theorem, we observe that Λ is conjugate to a subgroup

of ΓO(a) by  4.3.3 , while |ΓO : ΓO(a)| = |ΓO : Λ|. Thus, Λ is in fact conjugate to ΓO(a), and

the theorem follows.

4.3.1 Applications

With theorem  2 proven, we now turn to applications. First, off noting that as in corollary

 2.3.2 , any quaternion algebra over a field with class number one is of type number one, we

obtain the following corollary:

Corollary 4.3.1. Let A be an indefinite quaternion algebra over Q, of discriminant D,

and O a maximal order in A. If N is an integer whihch is coprime to D, then the locally

symmetric space associated to the congruence lattice ΓO(N) is absolutely spectrally rigid.

For the next, corollary let us recall a theorem due to Hurwitz:

Proposition 4.3.1. Vishne-[HurwitzQuaternionOrder]2011 Let X be a compact Rie-

mann surface of genus g > 1. Then the number of automorphisms of X is bounded above by

84(g − 1).

If X is a compact Riemann surface of genus g > 1 for which | Aut(X)| = 84(g − 1),

then X is known as a Hurwitz surface. In Reid-[TracesLengthsAxes]2014 A. Reid

asked whether a Hurwitz surface is determined by its spectrum. We partially answer this

question in the affirmative, as follows: First, observe that, by definition, a Hurwitz surface X

must be a regular cover of the unique minimal volume closed hyperbolic 2-orbifold, Γ2,3,7\H,

where Γ2,3,7 is the group of rotations in the corners of a hyperbolic triangle with angles π/2,

π/3 π/7. It is known Katz.Schaps.Vishne-[ExplicitComputationsHurwitz]2008 that
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Γ2,3,7 is an arithmetic Fuchsian group, and arises as the units of reduced norm 1 in the

unique quaternion algebra over the totally real subfield K of Q[ζ] where ζ is a primitive 7th

root of 1. Thus, K = Q[η] where η = ζ + ζ−1 satisfies the relation η3 + η2 − 2η − 1 = 0.

There are three real places of K, sending η to any of the three real roots of the preceeding

equation, namely the unique positive root 2 cos(2π/7) > 0, and the two negative roots

2 cos(4π/7), 2 cos(6π/7) < 0. The quaternion algebra over K which is ramified over the two

negative real places, and unramfieid over all other places, has a maximal order with group

of units of reduced norm 1, equal to Γ2,3,7. Furthermore, as K has class number 1, this

quaternion algebra has type number 1. Consequently, theorem  2 applies to say that any

Hurwitz surface arising from a principal congruence subgroup of Γ2,3,7 is spectrally rigid.

Corollary 4.3.2. Let X be a principal congruence Hurwitz surface. Then X is spectrally

rigid.
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